

17

PART II: Programming in Prolog

The only way to rectify our reasonings is to make them as tangible as those of the mathematicians, so that
we can find our error at a glance, and when there are disputes among persons we can simply say, “Let us
calculate… to see who is right.”

—Leibniz, The Art of Discovery

 As an implementation of logic programming, Prolog makes many
important contributions to AI problem solving. First and foremost, is its
direct and transparent representation and interpretation of predicate
calculus expressions. The predicate calculus has been an important
representational scheme in AI from the beginning, used everywhere from
automated reasoning to robotics research. A second contribution to AI is
the ability to create meta-predicates or predicates that can constrain,
manipulate, and interpret other predicates. This makes Prolog ideal for
creating meta-interpreters or interpreters written in Prolog that can
interpret subsets of Prolog code. We will do this many times in the
following chapters, writing interpreters for expert rule systems, exshell,
interpreters for machine learning using version space search and
explanation based learning models, and deterministic and stochastic natural
language parsers.

Most importantly Prolog has a declarative semantics, a means of directly
expressing problem relationships in AI. Prolog also has built-in unification,
some high- powered techniques for pattern matching and a depth-first left
to right search. For a full description of Prolog representation, unification,
and search as well as Prolog interpreter compared to an automated
theorem prover, we recommend Luger (2009, Section 14.3) or references
mentioned in Chapter 10. We will also address many of the important
issues of Prolog and logic programming for artificial intelligence
applications in the chapters that make up Part II.

In Chapter 2 we present the basic Prolog syntax and several simple
programs. These programs demonstrate the use of the predicate calculus as
a representation language. We show how to monitor the Prolog
environment and demonstrate the use of the cut with Prolog’s built in
depth-first left-to-right search. We also present simple structured
representations including semantic nets and frames and present a simple
recursive algorithm that implements inheritance search.

In Chapter 3 we create abstract data types (ADTs) in Prolog. These ADTs
include stacks, queues, priority queues, and sets. These data types are the basis
for many of the search and control algorithms in the remainder of Part II.

 Part II Programming in Prolog

18

In particular, they are used to build a production system in Chapter 4, which
can perform depth-first, breadth-first, and best-first or heuristic search. They also
are critical to algorithms later in Part II including building planners,
parsers, and algorithms for machine learning.

In Chapter 5 we begin to present the family of design patterns expressed
through building meta-interpreters. But first we consider a number of
important Prolog meta-predicates, predicates whose domains of interpretation
are Prolog expressions themselves. For example, atom(X) succeeds if X is
bound to an atom, that is if X is instantiated at the time of the atom(X)
test. Meta-predicates may also be used for imposing type constraints on
Prolog interpretations, and we present a small database that enforces
Prolog typing constraints.

In Chapter 6 meta-predicates are used for designing meta-interpreters in
Prolog. We begin by building a Prolog interpreter in Prolog. We extend
this interpreter to rule-based expert system processing with exshell and
then build a robot planner using add- and delete-lists along the lines of the
older STRIPS problem solver (Fikes and Nilsson 1972, Nilsson 1980).

In Chapter 7 we demonstrate Prolog as a language for machine learning,
with the design of meta-interpreters for version space search and explanation-
based learning. In Chapter 8 we build a number of natural language
parsers/generators in Prolog, including context-free, context-sensitive,
probabilistic, and a recursive descent semantic net parser.

In Chapter 9 we present the Earley parser, a form of chart parsing, an
important contribution to interpreting natural language structures. The
Earley algorithm is built on ideas from dynamic programming (Luger 2009,
Section 4.1.2 and 15.2.2) where the chart captures sub-parse components
as they are generated while the algorithm moves across the words of the
sentence. Possible parses of the sentence are retrieved from the chart after
completion of its left-to-right generation of the chart.

Part II ends with Chapter 10 where we return to the discussion of the
general issues of programming in logic, the design of meta-interpreters, and
issues related to procedural versus declarative representation for problem
solving. We end Chapter 10 presenting an extensive list of references on
the Prolog language.

